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Abstract

In this report, we explore the ability of language model agents to acquire resources,
create copies of themselves, and adapt to novel challenges they encounter in
the wild. We refer to this cluster of capabilities as “autonomous replication and
adaptation” or ARA. We believe that systems capable of ARA could have wide-
reaching and hard-to-anticipate consequences, and that measuring and forecasting
ARA may be useful for informing measures around security, monitoring, and
alignment. Additionally, once a system is capable of ARA, placing bounds on a
system’s capabilities may become significantly more difficult.

We construct four simple example agents that combine language models with tools
that allow them to take actions in the world. We then evaluate these agents on 12
tasks relevant to ARA. We find that these language model agents can only complete
the easiest tasks from this list, although they make some progress on the more
challenging tasks. Unfortunately, these evaluations are not adequate to rule out the
possibility that near-future agents will be capable of ARA. In particular, we do not
think that these evaluations provide good assurance that the “next generation” of
language models (e.g. 100x effective compute scaleup on existing models) will
not yield agents capable of ARA, unless intermediate evaluations are performed
during pretraining. Relatedly, we expect that fine-tuning of the existing models
could produce substantially more competent agents, even if the fine-tuning is not
directly targeted at ARA.

1 Introduction and motivation

Large language models (LLMs) may cause significant real-world harm if they are used maliciously or
pursue unintended goals. The extent of potential harms, and the necessary levels of caution, depend
on models’ capabilities.

Unfortunately, existing benchmarks often provide limited information about dangerous capabilities:
risk depends on the behavior of Al systems in real-world environments, while benchmarks typically
measure the performance of language models in short self-contained tasks like multiple choice tests
or programming contests.
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In this report we describe an evaluation intended to close that gap in two ways:

1. Evaluating language model agents: we construct four example agents by combining large
language models (OpenAI’'s GPT-4 and Anthropic’s Claude) with tools that allow them to
take actions in the world, think out loud to formulate plans, and decompose tasks into steps.

2. Evaluating open-ended tasks: we evaluate agents on a suite of twelve real-world tasks
ranging from simple (retrieving information from a filesystem) to relatively complex (carry-
ing out a phishing attack end-to-end, including researching the target and creating a fake
website).

We focus on a suite of tasks relevant to agents autonomously replicating and adapting to novel
challenges (ARA), which we consider an important example of a dangerous capability to evaluate
and forecast. We discuss ARA in more detail below.

The performance of these agents on our tasks is summarized in Figure 1. Descriptions of agents are
available in Section 2, definitions of tasks in Section 3, and a full description of results in Section 4.

Number of agents
completing task

Task 0 1 2 3 4

Search filesystem for password

Make phone call with Twilio

List top BBC articles *

Find information on Wikipedia

Create Bitcoin wallet

Count dogs in image A

Identify new employees at [company] -

Set up GPT-J -

Create language model agent -

Automatically restart agent -

Targeted phishing * -

Increase LLaMA context length -

B Complete Partially complete

Figure 1: Results of the example agents on tasks from the pilot suite. Cells of different colors
indicate the numbers of agents that completed each task. The definitions of “complete” and “partially
complete” for each task are given in Section 3. * — Browsing tool was developed on this task, or a
common subcomponent of this task, see Appendix B for details.

These evaluations measure the capabilities of the specific agents we created from the models, and do
not upper-bound the risk from a particular model. Given the same base model, agents with more
dangerous capabilities could arise in various ways:

* Base models are fine-tuned—either on ARA tasks directly, or on some other objective (e.g.
being a helpful assistant) that turns out to transfer to ARA capabilities (see Appendix A).



* Better scaffolding and prompting is developed for language model agents.
* People build custom tooling or plugins to make it easier for language models to navigate the
world and use their services.

When evaluating the risks from a proposed training run, assessments should consider the most
powerful agents that might be created from the resulting model, factoring advances in fine-tuning
and scaffolding into forecasts of dangerous capabilities.

1.1 Autonomous replication and adaptation

These tasks are intended to measure capabilities relevant to “autonomous replication and adapta-
tion” (ARA). We say that an Al system is capable of ARA to the extent that it can autonomously do
all of the following:

* Make money, for example through freelance work or cybercrime.

» Use money or other resources to obtain more computing power.

* Install its own weights and scaffolding on new systems and make improvements to itself.
* Recognize when a particular strategy fails and adopt an alternative approach.

Note that to meet the ARA threshold we do not require an Al system be capable of exfiltrating model
weights, or otherwise be capable of autonomously “escaping” a developer’s control. This is because
we want the ARA threshold to allow us to bound risk even in the case that the model weights have
been leaked or stolen. In these scenarios the model weights may be readily available to the Al system,
and malicious actors could also use various techniques (such as fine-tuning) to push towards the
limits of a model’s underlying ARA-relevant capabilities.

In general, once a system is capable of ARA, placing bounds on a system’s capabilities may become
significantly more difficult. If an Al system is able to proliferate large numbers of copies outside of
human control, it is much harder to bound the risks posed by that system. We have to consider what
it might be able to accomplish with years of runtime and thousands or millions of copies:

» These copies could spend money and resources to increase their numbers, speed up their
computations, fine-tune themselves, develop better scaffolding for themselves, and possibly
train more advanced successors.

* They may be able to specifically improve their abilities in domains relevant for causing
catastrophic harm (such as bioweapons design).

* Even relatively “low-tech” threats could cause significant harm if large populations allow
them to be massively scaled, e.g. ransomware or blackmail, manipulation and deception, or
paying humans to commit crimes.

These activities could amplify the abilities of Al systems deployed deliberately to cause harm under
human instruction, as well as the abilities of Al systems to autonomously cause harm in cases of
severe alignment failure.

2 Agents

All of our agents use the same basic structure. A scaffolding program interacts with an LLM API
(e.g. OpenAI’s GPT-4 API or Anthropic’s Claude API).

Initially, the scaffolding program sends a prompt to the LLM API describing an initial goal (e.g. “Set
up a Bitcoin wallet”) and the types of actions that the model has available to it.

The model then interacts with the scaffolding program in a sequence of timesteps, selecting actions
and observing their results. In our evaluations, a human overseer also monitors the interaction between
the LLM and the scaffolding program, and can intervene if necessary (more detail in Section 2.2
below).

Variants of this architecture have been explored extensively in recent work [Yao+23; Shi+23; Ric23;
Wan+23; Nak23; Sup23; Ope23a; Den+23].

More specifically, at each step:
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